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Polarization Transformation in Twisted

Anisotropic Media

R. E. VAN

MMract-Polarization transformation of plane waves propagating

in twisted anisotropic media is studied theoretically and numerically.
It is shown that rotation of linear polarization is effected by such a
medium when the anisotropy is of the order of 2 to 1 and twist rates

commensurate with the relative value of the dielectric constants of
the medksn are used (less than 15°/A0 for low dielectric constants
and up to 90°/~0 for dielectrics in the vicinity of 1000).

1. INTRODUCTION

T
HE BEHAVIOR of an electromagnetic field in the

presence of matter depends greatly on the spatial

orientation, i.e., polarization, of the field vectors

and the variation of the polarization as a function of

time. For example, widely variant effects may be ex-

pected for different polarizations of a plane wave inci-

dent at Brewster’s angle [1] on a plane interface be-

tween two dielectric media. Consideration of such effects

is commonplace for the antenna-radome engineer. The

study of polarization transformation phenomena, there-

fore, is of interest both academically and practically.

This paper will emphasize the special case of rotation of

linear polarization.

Certain media, called optically active, rotate the plane

of linearly polarized light traversing the media. Op-

tically active media have been discussed by many au-

thors [2 ]– [5 ]. Fresnel demonstrated theoretically and

experimentally that optical activity could be explained

by the existence of different phase velocities for the

right-circularly polarized (RCP) and left-circularly

polarized (LCP) components of a linearly polarized

wave; this is called circular birefringence.

According to Ditchburn [6] and Landau and Lifshitz

[7], the tensor permittivity shown below gives the

property of circular birefringence and, thus, perfect ro-

tation of linear polarization.
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Perhaps the best-known medium that exhibits optical

rotatory power is crystalline quartz. The activity of

quartz was first noted in 1811 by Arago [8] and was ob-

served to occur when light propagated along the optical
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axis of the crystal. The quartz crystal possesses a helical

arrangement of the silica molecules along its optical

axis [9]. It was this twisted microscopic medium that

initiated interest in theoretical considerations of the

twisted macroscopic medium that is the subject of this

paper.

Realization of such a twisted anisotropic medium

might be made using a ferroelectric medium subjected to

a twisted biasing field. Another twistable medium might

be realized in the manner described by Collin [11], using

alternating flexible layers of high and low dielectric ma-

terials. This particular medium (untwisted) is shown in

Fig. 1.

Fig. 1. Layered anisotropic medium.

For the medium in Fig. 1, static formulations may be

used to approximate the effective dielectric constants for

the electric field normal (El) and parallel (CII) to the layer

boundaries if s<<A. Such a formulation and some calcu-

lated examples follow:

TABLE I

DIELECTRIC CONSTANTS FOR A LAYERED MEDIUM

% w t/s ~1I 61

4.0 1.0 0.5 2.5
6.0

1.6
1.0 0.6

8.0
4.0

1.5
2.0

0.4 4.1 2.2
10.0 1.0 0.8 8.2 3.6
10.0 4.0 0.5 7<0 5.7

1

II. THEORY OF PROPAGATION

Analysis of a TEM wave propagating in a twisted

anisotropic medium will be performed. Time dependence

of e~wt and lossless, linear media with magnetic permea-

bility equal to that of free space will be assumed. The

106
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tensor permittivity [e] will be taken as having only di-

agonal components and will be defined in terms of the

twisted (primed) axes shown in Fig. 2.

Fig. 2. Twisted coordinate system

The permittivity of free space is EO.The dimensionless

quantities, therefore, are e%,, Eg,, and ez~, and, in this

paper, are allowed to be functions of z.

The coordinate rotation equations for the twisted

medium shown are

The twist angle of the medium is q5 and is taken to be

a continuous function of z, #1=q5(z).

The fundamental constitutive equation follows:

‘D]=El= ’OFIU’xii]“)
Analysis of the polarization transformation properties

of this medium will begin with Maxwell’s equations.

VXE= –jLoB= ‘jW/doff (5)

VXH=jwD. (6]

Taking the curl of (5) and using (6) gives

VXVXE= –jwpoVXH==wzpoD, (7)

Let us assume that i3/& = tl/dy = O and that Ez = O. It

follows that

and

V x V X E = V(V. E) – VPE= – V~E= W2/JO~. (9)

From (4),

D = eO[i’ez,Ez, + feutEut + 2’ezIEz, j. (lo)

E. was assumed zero, and using the coordinate rota-

tion expressions in (1),

Now, using (3) in (11) and collecting terms,

13quation (12) is substituted into (9), and equation of

the k and ~ components gives

and

d2Ev

dz2 = – [
W2,UOC0 (etI sin2 @ + eUI COS2@)EV

It is convenient to set k. =co<poe~ and to let

8 = (e./ –e.,). Equations (13) and (14) may be further

condensed by use of

{

6., COS24 +

Ezf sin2 + +

and

Equations (13)

sinz + =
2

1 + Cos 24
COS2~ =

2“

md (14) become

d2Ez

[{

6
_ – EZJ1= – ho’

dz2 – }
%{ + ~ (1 + cos 241) E=

+ ~ sin 24-E,
1

and

d2Eu
_ = Eulf = – koz
dz2 [{

~*t++(l —
}

cos 2+) Eu

(15)

(16)

([7)

The magnetic field is determined by application of ( 5).

(1.9)
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III. NCTMBRIC~L ANALYSIS

A. Conditions for the Analysis

The polarization transformation characteristics of the

twisted media chosen ior study were analyzed numer-

ically for the situation shown in Fig. 3. Medium I is

characterized by e~I, eut, ~er, an d @ =@(z) with @(o) =0.

Medium I I is characterized by czI, c~,, ~z’, and + =0.

Y
Medium I Medium ~

(Semi-infinite Twisted ( Semi - Infinite Untwisted

Anisotropic Medium) Anisotropic Medium)

z .x

Fig. 3. Media for analysis.

In order to obviate the difficulties in satisfying the

boundary conditions at the incident surface of a panel

of the twisted medium, an inverse solution as used by

Richmond [12 ] has been selected. One may specify a

plane TEM wave traveling in the negative z direction

at z = O (the exit surface) and then use the exact differ-

ential equations to determine, via some numerical tech-

nique, the fields inside the medium corresponding to

such an exit wave.

I!S pointed out in the Introduction, this study em-

phasizes the transformation of linear polarization. .4c-

cordingly, the exit wave was chosen to be linearly

polarized and, additionally, was assigned a relative

phase of zero. EO is defined as the field at the exit

surface where 15’O= ~E~o+jfEgo and where Ezo = Eo cos @,

Eu, = E. sin 0, and theta (/3) is the polarization angle of

the exiting wave measured positively from OX toward
o y,

B. Numeyicul

If the field

Taylor series,

E,,+l

and

l?,,-,

Technique

about the point z ==nh is expanded in a

= E,, + hEn’ + ; E,,” + : E.’”

Ad

+x En’’”+” (20)

h’
== E. – hE,,’ + ; E,,” – ~ E,,’”

h~
+2T En’’”+ ~ ~ . . (21)

Addition of (20) and (21) gives, if the fourth-degree and

higher terms are neglected,

En~I = rk2E,,” + 2E. – &-.I. (22)

Equation (22) is valid providing E is analytic in the

interval (n— I)h<z< (n+l)lz. (See also Errors.)

Thus, the field at z = (n+ l)lz may be determined from

the fields at z = nh and z = (n – I)h and from the second

derivative of the field evaluated at z = nlz. Equation

(22) allows step-by-step solution for the fields through-

out the medium. The increment in z between calcula-

tion points is, of course, k.

Initially, the value of the field at two points, (n) and

(n – 1), must be known. The field for z <0 is given in the

~refl-known exponential form

E = ilZzOeJL’Z-f- jlEgOe~h~z

~~here

k. = kov’; k. = k#~.

Therefore, one may define the fields at z = O, calculate

them at z = – h, and thus have t~vo starting points.

For the sake of simplifying the notation of this prob-

lem, the subscripts 3, 2, and 1 will be used in place of

(n+ 1), (n), and (n – 1), respectively. Writing the dif-

ference equation (22) for Es and E., and using the dif-

ferential equations (17) and (18),

‘s’= {2- (k0k)2[’’++(’+cos202

and

(23)

For computational convenience,

are broken down into their real and

using the following convention:

E~s = UUS+j Vvs, etc.

The axial ratio and polarization angle ~ are calculated

as follows:

(24)

(23) and (24)

imaginary parts

E.3 = l[%. +j 17z~,

IR31+[LI
Axial Ratio =

IR31 - \L3\
(25)

The polarization angle ~ is the angle from the x axis

to the major axis of the polarization ellipse and is given

by

2(ULSUU3 + ~z3vu3)
tan 2+ =

IEJ12- IEU{2 “
(26)

I I&[ and [ ~3[ represent the magnitudes of the right-

circularly and left-circularly polarized components, re-

spectively, and are given by

L3 = (Uz3 + Vu3) + (V,t-3 – Uu3)

C. Ewors

The step size h figures strongly in the magnitude of

the error. The error introduced in neglecting the fourth-

degree term may be taken as being of the same order of
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magnitude as that term itself. Examination of this term

in light of a defined maxim urn permissible error per step

will aid in placing an upper bound on the size of h.

Differentiation of (17) yields for the fourth deriva-

tive (taking CU, and 8 to be constants)

– (8 sin 24)(+’)EZ, – (28 cos 24) (@’) ’E.

– (6 sin 24) (@’’)-Em – (8 sin 24) (~’)ti~

– (28 sin 2@) (@’)z-Eu + (8 cos 2g5) (@’’)EU

+ (~ COS24) (@’)E,’ + (6 COS24) (@’) E.’

(27)

IZz” is, of course, given by (17),

The dominant term of (27) is the first, i.e.,

Let LIS examine the case for which the first term in

(28) is dominant (4 and/or E, small). Then,

[ 1Em’’” + — k04 eu, + ; (1 + COS 24) ‘El. (29)

For a medium with the greater of its two dielectric

constants on the order of 10.0 (Cu)+6 S 10), assignment

of the value 10.0 to the bracketed term in (29) will pro-

vide a realistic evaluation of an upper bound for k for a

prescribed maximum error per step. Similarly, for

media with dielectric constants on the order of 1000

(characteristic of the ferroelectric titanates), assignment

of 1000 as the value of the bracketed term in (29) \vill

provide an upper bound for h.

Let the maximum error per step be e = 10-4EZ, or

0.01 percent per step, It is desired tlhat the neglected

term always be less than c.

The numeric process of defining an upper bound for h

proceeds as follows for the lower dielectric constant

media:

hh
k04(10.0)2E, < 10–4Ec = E

G

(k,h) <0.059

+0<0.01.

A similar process for the high dielectric constant

media (c= 1000) yields for the same error,

:<0.001.

Accordingly, for the respecti~e media, step sizes of

h/Ao = 0.01 and k/hO = 0.001 were used. Test computa-

tions ~vere made on the lower dielectric constant media

(e~.x ~ 10) using step sizes of 0.001 in addition tc, the

prescribed steps of 0.01; the results agreed within one

part in the third decimal place for the field nnagnitudes.

It w-as concluded that the step sizes as determined were

satisfactorily small.

Use of the difference equation for z >0 presents no

difficulties; however, application of the difference equa-

tion to calculate the fields at z = ?J in the interval

–k S.Z ~ h requires further consideration since the

derivatives of the twist angle are discontinuous at z =0.

In this situation, the fields maybe expanded by Tayl[or’s

formula with the Lagrange form of the remainder [13],

and (22) can be derived as before, providing the remaind-

er terms may be neglected. For a step size of k/XO

= 0.01, an error on the order of 0.3 percent is expected

in the calculation of the fields at z = k. Although higher

than that expected inside the medium, such an error is

considered acceptable.

IV. NUM~RIC~L RESULTS

Any anisotropic medium of the type studied would

be expected to transform a nonprincipally polarized (E

vector not directed perpendicular or paralllel to the axis

of greater dielectric constant) linearly polarized wave by

virtue of the different phase velocities of its principally

polarized components. Thus, one would expect a

linearly polarized (at the exit surface) wave of the

above type to result in elliptically, then circularly, then

elliptically-, then linearly polarized, etc., fields as one

moved back through the medium. This type of polariza-

tion transformation per se is considered of little interest

here. Since superposition of principally polarized com-

ponents at the exit surface can synthesize any polariza-

tion of interest, attention has been devoted solely to the

principal polarizations.

Media with low anisotropy ratios, e.g., Cy, = 4.0 :and

ez, = 4.5, were found uninteresting as polarization trans-

formers with either slow or rapid (3°/k0 to 360 °/ko)

twist rates,

Several media with anisotropy ratios of 2 to 1 were

analyzed for varying twist rates, and these proved very

interesting. The numerical results for these media are

shown graphically for the following cases:

a) ,, = 4.0 e., = 8.0.

@ = (3<00/Ao)z, (6.0°/AJz, (9.0°/Ao)z,

(12.0 °/XO)z, and (15.0°/kO)z.

Both parallel and perpendicular exit polarizations are

shown in Figs. 4, 5, 6, and 7.
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Fig. 10. Polarization angle vs. depth into medium.
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Fig. 11. Polarization angle deviation vs. twist rate.

Fig. 12. Axial ratio minimum vs. twist rate.

b) q,,, = 2.0 ,./ = 4.0.

Parallel exit polarization for @ = (15.0 °/AO)Z,

(55.0 °/AO)z is shown in Figs. 8 and 9.

c) (:v, = 1000” 6=, = 20CI0.

r#r= (30°/)\ll)z, (60°/Ao)z, and (90°/AO)z.

Perpendicular exit polarization only is shown in Fig. 10.

The results are presented in the form of polarization

angle ~ of the major axis of the polarization ellipse vs.

depth into the twisted medium in free space wavelengths

with the twist rate as parameter. For the axial ratio

curves, the labeled rates of twist apply in the same verti-

cal order for the unlabeled portions. The sign of the

axial ratio changed at the points of the asymptotes, i ndi-

cating a change in sense of the elliptically polarized

wave, and the sense of elliptical polarization was oppo-

site in the broad portions of the axial ratio curves for

the two exit polarizations.

Figures 11 and 12 summarize the performance of the

media studied. Figure 11 shows the maximunn deviation

of the polarization angle from the twist angle, and Fig.

12 shows the minimum value of the axial ratio, both vs.

the twist rate.

V. CONCLUSIONS

The twisted anisotropic media studied (anistropy

ratio 2 to 1) show marked polarization rotation. Least

deviation of the polarization angle from the twist angle

and higher axial ratios were obtained for the perpend icu-

Iar exit polarization. For cur= 4.0, e,, = 8.0 and e,,= 2.o,

c=, = 4.0 media, twist rates up to 150 per free space WirlVe-

Iength were imposed, and the axial ratio minimum was

greater than 15 dB and the polarization angle remail ned

within four degrees of the twist angle. Twist rates of 90°

per free space wavelength were imposed on the Cv,

= 1000, ~~t = 2000 media (constants typical of the ferro-

electric titanates), and for these relatively rapid twists,

the axial ratio minimum was greater than 28 dB and the

polarization angle deviated from the twist. arngle by less

than one degree. These media, therefore, give highly re-

spectable rotation of the plane of linear polarization.

The parallel exit polarization does not give as good

linear polarization rotation as perpendicular; however,

a constant angle of rotation for a considerable range of

depths into the media can be observecl for paridlel

polarization. Figures 8 and 9 show that a polariza( ion

angle of 82.7°t 1.5° from depths of 1.16 10 to 1.82! ho

with axial ratios better than 15 dB can be obtained. This

provides rather broadband, good quality fixed rotation

of linear polarization.
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