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Polarization Transformation in Twisted
Anisotropic Media

R. E. VAN DOEREN

Abstract—Polarization transformation of plane waves propagating
in twisted anisotropic media is studied theoretically and numerically.
It is shown that rotation of linear polarization is effected by such a
medium when the anisotropy is of the order of 2 to 1 and twist rates
commensurate with the relative value of the dielectric constants of
the medium are used (less than 15°/\ for low dielectric constants
and up to 90°/), for dielectrics in the vicinity of 1000).

I. INnTRODUCTION

HE BEHAVIOR of an electromagnetic field in the
T presence of matter depends greatly on the spatial

orientation, i.e., polarization, of the field vectors
and the variation of the polarization as a function of
time. For example, widely variant effects may be ex-
pected for different polarizations of a plane wave inci-
dent at Brewster’s angle [1] on a plane interface be-
tween two dielectric media. Consideration of such effects
is commonplace for the antenna-radome engineer. The
study of polarization transformation phenomena, there-
fore, is of interest both academically and practically.
This paper will emphasize the special case of rotation of
linear polarization.

Certain media, called optically active, rotate the plane
of linearly polarized light traversing the media. Op-
tically active media have been discussed by many au-
thors [2]-[5]. Fresnel demonstrated theoretically and
experimentally that optical activity could be explained
by the existence of different phase velocities for the
right-circularly polarized (RCP) and left-circularly
polarized (LCP) components of a linearly polarized
wave; this is called circular birefringence.

According to Ditchburn [6] and Landau and Lifshitz
[7], the tensor permittivity shown below gives the
property of circular birefringence and, thus, perfect ro-
tation of linear polarization.

e jy O
[l =1 —jv ¢ O]
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Perhaps the best-known medium that exhibits optical
rotatory power is crystalline quartz. The activity of
quartz was first noted in 1811 by Arago [8] and was ob-
served to occur when light propagated along the optical
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axis of the crystal. The quartz crystal possesses a helical
arrangement of the silica molecules along its optical
axis [9]. It was this twisted microscopic medium that
initiated interest in theoretical considerations of the
twisted macroscopic medium that is the subject of this
paper.

Realization of such a twisted anisotropic medium
might be made using a ferroelectric medium subjected to
a twisted biasing field. Another twistable medium might
be realized in the manner described by Collin [11], using
alternating flexible layers of high and low dielectric ma-

terials. This particular medium (untwisted) is shown in
Fig. 1.

Fig. 1. Layered anisotropic medium.

For the medium in Fig. 1, static formulations may be
used to approximate the effective dielectric constants for
the electric field normal (eL) and parallel (/) to the layer
boundaries if s<<\. Such a formulation and some calcu-
lated examples follow:
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II. THEORY OF PROPAGATION

Analysis of a TEM wave propagating in a twisted
anisotropic medium will be performed. Time dependence
of et and lossless, linear media with magnetic permea-
bility equal to that of free space will be assumed. The



VAN DOEREN: POLARIZATION TRANSFORMATION

tensor permittivity [e] will be taken as having only di-
agonal components and will be defined in terms of the
twisted (primed) axes shown in Fig. 2.
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Fig. 2. Twisted coordinate system.

The permittivity of free space is eo. The dimensionless
quantities, therefore, are e, €., and €., and, in this
paper, are allowed to be functions of z.

The coordinate rotation equations for the twisted
medium shown are

= £ cos ¢ — ysmzﬁ
9 =4 cos ¢+ 2 sin ¢ (1)
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1E”,—E cos ¢ — E, sin ¢ (3)
[
l

E.

The twist angle of the medium is ¢ and is taken to be
a continuous function of z, ¢ =¢(z).
The fundamental constitutive equation follows:

"D, & 0 0 [Es
[Dl={D,|=el0 ¢ 0 ||E, (4)
_Dz/ O 0 €y Ez'

Analysis of the polarization transformation properties
of this medium will begin with Maxwell's equations.

VX E = — joB = — jouH (5
V X H = juD. (6)

Taking the curl of (5) and using (6) gives
VX VX E=— jouV X H = wuD. )

Let us assume that 0/3x=09/dy=0 and that £,=0. It
follows that

a d 9
V E=—E+—E,+—E, =0 (8)
dx dy 0z
and
VX VXE=V(V-E)— VE= — V!E = wluD. (9)
From (4),
D = ef|#'eEe + §epEy + #erEn].  (10)

E, was assumed zero, and using the coordinate rota-
tion expressions in (1),
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D = Geoley Ey cos ¢ — e, By sin ¢]
+ Feolew o sin ¢ + €, cos ¢]. (11)

Now, using (3) in (11) and collecting terms,

D = fe[ (e COS*d + €, sin? ) F,
4+ (ew — €,) sin ¢ cos ¢ E, ]
+ feol (e sin? ¢ + ¢, cos? $)E,

+ (e — ) sin ¢ cos ¢E]. (12)

Equation (12) is substituted into (9), and equation of
the # and 4 components gives

d’E, .
= — w o€ [(éx! cos?¢ + ¢, sin? @) E,
dz?
€0 T €y | .
+ ~——2——— sin 2¢Ey] (13)

and
K, .
P = — wluoeo| (& sin® ¢ + ¢, cos? 9) L,

b4

€ T &
-+ — sin 2¢E, |. (14)
It is convenient to set ko=w+/moeo and to let
8= (e, —e,). Equations (13) and (14) may be further
condensed by use of

{ez/ cos? ¢ + ¢, sin? ¢ = €, + 6 cos® ¢ (15)
€ Sin? ¢ + €, cos? ¢ = €, -+ 8 sin® ¢ )
and
. 1 — cos 2¢
sin? ¢ = —~—F-—2
(16)
1+ cos 2¢
cos?¢ = — .

Equations (13)and (14) become
d*E,

1)
)
-+ > sin 2¢E,,il (7
and
d*E b
dz;' = E,)) = — ko? [ {e,v + —2— (1 — cos 2¢»)} E,

6 '
-} 5 sin 12¢Ez] . (18)
The magnetic field is determined by application of (5).

7 oE, dE,
H = f[—x~+«y :
Wito 0z 0z

(19)
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[1I. NUMERICAL ANALYSIS
A. Conditions for the Analysis

The polarization transformation characteristics of the
twisted media chosen tor study were analyzed numer-
jcally for the situation shown in Fig. 3. Medium I is
characterized by €., €, €/, and ¢ =¢(z) with ¢(0)=0.
Medijum II is characterized by €., €, €, and ¢=0.

y
Medium I Medium I
(Semi-Infinite Twisted { Semi- Infinite Untwisted
Anisotropic Medium) Anisotropic Medium}
z X

Fig. 3. Media for analysis.

In order to obviate the difficulties in satisfying the
boundary conditions at the incident surface of a panel
of the twisted medium, an inverse solution as used by
Richmond {12] has been selected. One may specify a
plane TEM wave traveling in the negative z direction
at z=0 (the exit surface) and then use the exact differ-
ential equations to determine, via some numerical tech-
nique, the fields inside the medium corresponding to
such an exit wave.

As pointed out in the Introduction, this study em-
phasizes the transformation of linear polarization. Ac-
cordingly, the exit wave was chosen to be linearly
polarized and, additionally, was assigned a relative
phase of zero. E, is defined as the field at the exit
surface where Ey=2F .0+ JE,0 and where E = E, cos,
E,o=FE, sin 6, and theta (§) is the polarization angle of
the exiting wave measured positively from 0OX toward
0Y.

B. Numerical Technique

If the field
Tavlor serles,

about the point z=mn/l is expanded in a

Al n?
En+1 = En + hEﬂ/ —I_ - En” + - En/”
2 6
14
__I_ _— EnNN + .. 20
o (20)
and
2 3
E, .= E,—hE/+—E/' ——E."
2 6
nt
+ "En//”"{" e (21)

24

Addition of (20) and (21) gives, if the fourth-degree and
higher terms are neglected,

En+1 = k2E71l, + 2En — En—-1- (22)

Equation (22) is valid providing E is analytic in the
interval (n—1)h<z<(n+1)h. (See also Errors.)

Thus, the field at 2= (4 1)k may be determined {rom
the fields at s =%k and 2= (n—1)k and from the second
derivative of the field evaluated at z=nh. Equation
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(22) allows step-by-step solution for the fields through-
out the medium. The increment in z between calcula-
tion points is, of course, 4.

Initially, the value of the field at two points, (#) and
(n—1), must be known. The field for 2<0 is given in the
well-known exponential form

E = &E e -+ §F e%v®

where
ke = kover Ry = ke,
Therefore, one may define the fields at z=0, calculate
them at 2= —#, and thus have two starting points.

For the sake of simplifying the notation of this prob-
lem, the subscripts 3, 2, and 1 will be used in place of
(n+1), (n), and (n—1), respectively. Writing the dif-
ference equation (22) for E, and E,, and using the dif-
ferential equations (17) and (18),

8
Ey = {2 — (koh)? I:eyr -+ -2~ (1 + cos 2¢z)]} B — Eoy

)
— (ko]l)2 7 sin 2¢2> Eyz (23)

and

)
Eyg = {2 —_ (koh)ZI:eyr + ? (1 — COS8 2(252)]} Eyz - El,1

— (koh)? (% sin 2¢2> Eo. (24)
For computational convenience, (23) and (24)
are broken down into their real and imaginary parts
using the following convention: E.= U.+7V s,
Ey;;: l7y3+j VyS, etc.
The axial ratio and polarization angle y are calculated
as follows:

| Re| + [ L]

R = o] @

Axial Ratio =
The polarization angle ¥ is the angle {from the « axis
to the major axis of the polarization ellipse and is given
by
2(U18Uy3 + I’ra;3Vy8)

(26)

[ Rs| and | Ls| represent the magnitudes of the right-
circularly and left-circularly polarized components, re-
spectively, and are given by

Ry = (UI3 - Vz/3) + (Vx3 + Uy3)
L; = (Upg + Vys) -+ (ng - Uy3)-
C. Errors

The step size % figures strongly in the magnitude of
the error. The error introduced in neglecting the fourth-
degree term may be taken as being of the same order of
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magnitude as that term itself, Examination of this term
in light of a defined maximum permissible error per step
will aid in placing an upper bound on the size of %.

Differentiation of (17) vields for the fourth deriva-
tive (taking €,» and 8 to be constants)

]
Ex”// —_ kOZ{[ey, —I— —2— (1 + Ccos 2(1))] Ex//

~ (9sin 2¢)(¢") Exr — (28 cos 2¢)(¢')*E,
— (8sin 2¢)(¢") E; — (3sin 2¢)(¢') £
— (26 sin 2¢)(¢)2E, + (6 cos 2¢)(¢") E,,
+ (5 cos 2¢)(¢")E,’ + (6 cos 2¢) (¢ E,’

+ (s 2>E}
—sin .
\ 2 @)Ly

E.'’ is, of course, given by (17),

(27)

6
E = — kg {I:ey/ + Y (1 + cos 2¢)i| L
8
+ 5 sin 2¢E,,} .

The dominant term of (27) is the first, i.e.,

’

5 12
E/ = — k04{:l:€y, -+ —2- (1 4+ cos 2¢)J E.

+ <_Z sin z¢) [ey, + % (1 + cos 2¢>] E} . (28)

Let us examine the case for which the first term in
(28) is dominant (¢ and/or E, small). Then,

5 2
E = — k04[€y' + - (1 + cos 2¢):l E,. 29)

For a medium with the greater of its two dielectric
constants on the order of 10.0 (¢, +6<10), assignment
of the value 10.0 to the bracketed term in (29) will pro-
vide a realistic evaluation of an upper bound for % for a
prescribed maximum error per step. Similarly, for
media with dielectric constants on the order of 1000
(characteristic of the ferroelectric titanates), assignment
of 1000 as the value of the bracketed term in (29) will
provide an upper bound for #.

Let the maximum error per step be e=10"E,, or
0.01 percent per step. It is desired that the neglected
term always be less than e.

The numeric process of defining an upper bound for %
proceeds as follows for the lower dielectric constant
media:

ht
0 Eo*(10.0)2E, < 107%E, = ¢
(koh) < 0.059

h
— < 0.01.
Ao
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A similar process for the high dielectric constant
nmedia (e=~1000) yields for the same error,

h
— < 0.001.

1]

Accordingly, for the respective media, step sizes of
I/ho=0.01 and %/Ao=0.001 were used. Test computa-
tions were made on the lower dielectric constant media
(emax <10) using step sizes of 0.001 in addition to the
prescribed steps of 0.01; the results agreed within one
part in the third decimal place for the field magnitudes.
It was concluded that the step sizes as determined were
satisfactorily small.

Use of the difference equation for $>0 presents no
ditficulties; however, application of the difference equa-
tion to calculate the fields at z=/4 in the interval
—h <2<} requires further consideration since the
derivatives of the twist angle are discontinuous at g=0.
In this situation, the fields may be expanded by Taylor’s
formula with the Lagrange form of the remainder [13],
and (22) can be derived as before, providing the remain-
der terms may be neglected. For a step size of /N,
=0.01, an error on the order of 0.3 percent is expected
in the calculation of the fields at z=17. Althcugh higher
than that expected inside the medium, such an error is
considered acceptable.

1V. NumEerIicAL RESULTS

Any anisotropic medium of the type studied would
be expected to transform a nonprincipally polarized (E
vector not directed perpendicular or parallel to the axis
of greater dielectric constant) linearly polarized wave by
virtue of the different phase velocities of its principally
polarized components. Thus, one would expect a
linearly polarized (at the exit surface) wave of the
above type to result in elliptically, then circularly, then
elliptically, then linearly polarized, etc., fields as one
moved back through the medium. This type of polariza-
tion transformation per se is considered of little interest
here. Since superposition of principally polarized com-
ponents at the exit surface can synthesize any polariza-
tion of interest, attention has been devoted solely to the
principal polarizations.

Media with low anisotropy ratios, e.g., €, =4.0 and
e =4.5, were found uninteresting as polarization trans-
formers with either slow or rapid (3°/Ao to 360°/\)
twist rates.

Several media with anisotropy ratios of 2 to 1 were
analyzed for varying twist rates, and these proved very
interesting, The numerical results for these media are
shown graphically for the following cases:

a) ey = 4.0 e = 8.0.
¢ = (3.0°/Ao)z, (6.0°/No)z, (9.0°/Ao)z,
(12.0°/Ao)z, and (15.0°/A)z.

Both parallel and perpendicular exit polarizations are
shown in Figs. 4, 5, 6, and 7.
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Fig. 4. Polarization angle vs. depth into medium
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b) e = 2.0 e = 4.0.
Parallel exit polarization for ¢ =(15.0°/\y)z,
(55.0°/N)z is shown in Figs. 8 and 9.
c) ¢ = 1000 e = 2000,
¢ = (30°/hg)z, (60°/Ao)z, and (90°/Ag)z.

Perpendicular exit polarization only is shown in Fig. 10.

The results are presented in the form of polarization
angle ¢ of the major axis of the polarization ellipse vs.
depth into the twisted medium in free space wavelengths
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with the twist rate as parameter. For the axial ratio
curves, the labeled rates of twist apply in the same verti-
cal order for the unlabeled portions. The sign of the
axial ratio changed at the points of the asymptotes, indi-
cating a change in sense of the elliptically polarized
wave, and the sense of elliptical polarization was oppo-
site in the broad portions of the axial ratio curves for
the two exit polarizations.

Figures 11 and 12 summarize the performance of the
media studied. Figure 11 shows the maximum deviation
of the polarization angle from the twist angle, and Fig.
12 shows the minimum value of the axial ratio, both vs.
the twist rate.

V. CoNCLUSIONS

The twisted anisotropic media studied (anistropy
ratio 2 to 1) show marked polarization rotation. Least
deviation of the polarization angle from the twist angle
and higher axial ratios were obtained for the perpendicu-
lar exit polarization. For ¢,, =4.0, €, =8.0 and ¢,, = 2.0,
e, =4.0 media, twist rates up to 15° per free space wuve-
length were imposed, and the axial ratio minimum was
greater than 15 dB and the polarization angle remained
within four degrees of the twist angle. T'wist rates of 90°
per free space wavelength were imposed on the e,
=1000, €, =2000 media (constants typical of the ferro-
electric titanates), and for these relatively rapid twists,
the axial ratio minimum was greater than 28 dB and the
polarization angle deviated from the twist angle by less
than one degree. These media, therefore, give highly re-
spectable rotation of the plane of linear polarization.

The parallel exit polarization does not give as good
linear polarization rotation as perpendicular; however,
a constant angle of rotation for a considerable range of
depths into the media can be observed for parallel
polarization. Figures 8 and 9 show that a polarization
angle of 82.7°+1.5° from depths of 1.16 A to 1.82 A
with axial ratios better than 15 dB can be obtained. This
provides rather broadband, good quality fixed rotation
of linear polarization.

REFERENCES

1] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New
York: McGraw-Hill, 1961, p. 59.

2] T. M. Lowry, Optical Rotatory Power. London: Longmans, 1935.

3] E. U. Condon, “Theories of optical rotatory power,” Rev. Mod.
Phys., vol. 10, pp. 432-457, October 1937.

[4] R."W. Ditchburn, Light, 2nd ed. New York: Interscience,
1963, pp. 486488, 631, and 636-637.

[5] L. D. Landau and E. M. Lifshitz, Elecirodynamics of Continuous

Media, J. B. Sykes and J. S. Bell, Translators. Oxford: Per-

gammon, 1960, pp. 337-342.

R. W. Ditchburn, op. cit. [4], pp. 636-637.

L. D. Landau and E. M. Lifshitz, loc. cit. [5).

T. M. Lowry, op. cit. [2], pp. 5-6.

, 1bid., p. 342-346.

, Ibid., p. 342,

R. E. Collin, “A simple artificial anisotropic dielectric medium,”

IRE Trans. on Microwave Theory and Techniques, vol. MTT-6,

pp. 206-209, April 1958.

[12] J. H. Richmond, “Transmission through inhomogeneous plane
layers,” IRE Trans. on Antennas and Propagation, AP-10, pp.
300-305, May 1962.

[13] A. E. Taylor, Advanced Calculus. Boston: Ginn, 1955, pp. 112~
114.




